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Abstract

The impact of cognitive and socially bounded consumer agents on an integrated
markets model isinvestigated. The market scenario consists of a financia market
with trading agents and a consumer market. The markets are coupled vialearning
production firm agents offering their products and shares for sale. The consumer
agents are embedded in a socia structure based on “small-world network”
principles. The cognitive model of the consumer agents enables them to make
their decisions according to the behavior of the adjacent socia neighborhood and
based on the degree of satisfaction and uncertainty they are facing. The potential
and limitations of the consumer agent model are explored by applying arecently
introduced Markov chain Monte Carlo method. Therefore certain empirical
phenomena or “stylized facts’ are selected for reproduction within the simulation
and the conditions of their occurrence are analyzed. It is shown that the
properties of the socia network structure and the sensitivity of the agents
cognitive decision making process (heuristics) contribute significantly or are, in
fact, enabling the complex phenomena of Bass curves observed in consumer
market scenarios. Furthermore the results indicate that the structural properties of
the emerged socia networks are stable and match rea-life social networks.
Moreover we show that the network structure has a strong impact on the
development of market share. Thus we suggest the use of the social network
descriptive parameters, which could be discovered empirically, as predictive
factors for marketing forecasts.



1 Introduction

Neoclassical economic theory is based on the assumption of rationally acting individuals,
who are able to consider all available information in the decision-making process. As an
early critic of economic agents with unlimited information processing capabilities
Herbert Simon (1955, 1982) suggested the term “bounded rationality” to describe a more
realistic approach to cover human problem solving. Indeed, the complexity of human
behavior suggests that a choice model should explicitly capture uncertainty. Real
economic agents are restricted at least in their cognitive (knowledge) and computational
abilities (Mullainathan and Thaler, 2000). Enriched by a socia network perspective,
which states that most behaviors are also closely embedded in networks of interpersonal
relations, an additional focus lies in the relationships among interacting units. According
to Wassermann and Faust (1994) a social network is a set of people or groups of people
(“actors’ or agents) with certain pattern of interactions (“ties’) between them. Central
concepts are;

e actors and their actions are viewed as interdependent

e relationships among actors are channels for transfer of resources

e the network structure provides constraints and opportunities for individual action

e lasting patterns of relations are conceptualized as structure.

Recent work on social networks has focussed on distinctive features of network structure
(Newman et al., 2002). One of these isthe “small world” effect first described by
Milgram (1967). His experiment involved |etters that were passed between pairs of
apparently distant people. Milgram found that the typical chain from acquaintance to
acquaintance only has a length of about six persons (popularly known as “ Six Degrees of
Separation”). Since then dozens of academic studies have revealed that many networks
have related “small-world” properties (see for example Watts and Strogatz, 1998).
Usually the topology of a (social) network is assumed to be either completely regular or
completely random. However, many biological, technological and social networkslie
between these two extremes. These systems are highly clustered, like aregular lattice, but
have small path lengths, like random graphs and are named “small-world” networks.
From a social systems perspective this means that it only takes a small number of well-
connected people to make aworld small (Collins and Chow, 1998).

In this article we introduce an agent-based computational economic model, which
incorporates boundedly rational agents embedded in a social network structure.
Computational economic models bridge the gap between theoretical and empirical
economics. They can represent a testbed, which enables us to investigate the predictions
of atheory under conditions which are too complex to be addressed analytically. Hence
computational models can be used to gain insights into complex systems and furthermore
suggest new hypotheses to be tested in empirical studies (for areview of agent-based
computational economics see Tesfatsion, 2002). We present a considerably extended
version of the integrated markets model, recently introduced by Sallans et al. (2002,
2003). The model spans two markets: a consumer market and a financial equities market.
The consumer market consists of production firms offering a good for sale, and customer
agents who can purchase the good. The financial equities market consists of stock traders
who can buy and sell shares in the production firms. The new model focuses on amore



life-like model of consumer agents. The new agents are embedded in a socia structure
based on “small-world” principles and incorporate an enhanced cognitive decision
structure related to the consumat approach presented by Janssen and Jager (2000). Since
inreal life people do not behave in a systematic manner (see for example Gintis, 2000) a
rational agent approach can not account for behavioral dynamics such as habits, imitation
and social comparison. To explore how such behavioral dynamics affect the evolution of
an economic system, it is practical to apply a more sophisticated approach in the
integrated modeling context. The main contribution of this approach isthat it increases
the psychological richness and possibilities of validation of the simulated behavioral
dynamics since it introduces behavioral rules based on a conceptual meta-model of
behavior. Thiswill take account of certain types of behavior like imitation, socia
comparison and market dynamics like lock-in, loyalty and bandwagon or snob effects.

We evaluate the fruitfulness of the new approach by comparison of the model’s
output (macro level, for example afirm agent’ s market share) to known “stylized facts’
in consumer and financial markets. Stylized facts are robust empirical phenomena, which
characterize market dynamics and have been observed in real markets. For the validation
of our integrated markets model we use awell known stylized fact found in consumer
markets, the Bass curve. It is described by the Bass diffusion model and was introduced
by Frank M. Bass (1969) in his now classic paper.

2 Thelntegrated Markets M odel

The model consists of two interacting markets, a consumer and afinancial equities
market. The consumer market simulates the manufacture of a product by production
firms, and the purchase of the product by consumers. The financial market simulates
trading of shares. The shares are bought and sold by financial traders. The two markets
are coupled: The financial traders buy and sell sharesin the production firms, and the
managers of firms are concerned with their share price. The traders can use the
performance of afirm in the consumer market in order to make trading decisions.
Similarly, the production firms can potentially use positioning in product space and
pricing to influence the decisions of financial traders (see figure 1).
The simulator runsin discrete time steps. Simulation steps consist of the following
operations:
e Consumers make purchase decisions
e Firmsreceive an income based on their sales and their position in product space
e Financial traders make buy/hold/sell decisions. Share prices are set and the market
iscleared
e Every N, steps, production firms update their products or pricing policies based
on performance in previous iterations

The integrated markets model is intended to be a generic model of the interaction
between financial and consumer markets. It has been shown to reproduce a large range of
empirical “stylized facts’ including learning-by doing in the consumer market; low
predictability, high kurtosis and volatility clustering; and correlations between volatility
and trading volume in the financial market.
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Figure 1: The Integrated Markets Model. Consumers purchase products, and financial
traders buy and sell shares. Production firms link the consumer and financial markets, by
selling products to consumers and offering their shares in the financial equities market
(from Sallans et ., 2003).

21 TheConsumer Market

The consumer market consists of firms which manufacture products, and consumers who
purchase them. The consumers will re-purchase at regular intervals. The product spaceis
represented as atwo-dimensiona simplex, with product features represented as real
numbersin the range [0,1]. Each firm manufactures a single product, represented by a
point in this two-dimensional space. Consumers have fixed preferences about what kind
of product they would like to purchase. Consumer preferences (individual needs) are also
represented in the two-dimensional product feature space. There is no distinction between
product features and consumer perceptions of those features. Each consumer agent is
embedded in a social structure which influences its social needs and incorporates a
cognitive decision structure which accounts for its committed behavior (repetition,
imitation, social comparison, deliberation). Consumer agents react to their individual
needs, social needs and the price of the produced products. We describe the details of the
consumer agentsin section 3.

2.2 Production Firms

The production firms are adaptive learning agents. They adapt to consumer preferences
and changing market conditions via a reinforcement learning algorithm (Sutton and
Barto, 1998). In each iteration of the simulation the firms must examine market
conditions and their own performance in the previous iteration, and then modify their
product or pricing. A boundedly rational agent can be subject to several kinds of
limitations. These limits manifest themselvesin the firm's representation of its
environment and its knowledge of its competitors. The firms do not have complete
information about the environment in which they operate. In particular, they do not have
direct access to consumer preferences. They must infer what the consumers want by
observing what they purchase. Purchase information is summarized by performing “k-
means’ clustering on consumer purchases. K-means is a common clustering technique



used in consumer market research. The number of cluster centersisfixed at the start of
the simulation. The current state information consists of the positions of the cluster
centers in feature space, along with additional state information such as whether or not
the previous action was profitable or boosted stock price, and where the competitors
products are located. This information gives a summary of the environment at the current
time step.

Firms make decisions based on a finite history of states of some length. This
limited history window represents an additional explicit limit on the firm's knowledge. In
each iteration the firms can take one of several actions. The actions include taking a
random action, doing nothing, raising or lowering product price, or moving the product in
feature space. The random action was included to allow the firm to explicitly choose to
take a“risky” exploratory action. A firm's manager seeksto modify its behavior so asto
maximize an externa reward signal. Thisreward signal can be viewed as the managers
compensation for its actions. Given the reward signal, the firm learns to make decisions
using areinforcement learning algorithm (Bertsekas and Tsitsiklis, 1996; Sutton and
Barto, 1998). Given the reward signal at each time step, the learning agent attempts to act
so as to maximize the total (discounted) reward received over the course of the task. The
discounting indicates how “impatient” the manager isto receive its reward. It can also be
related to the interest rate for alow-risk investment or the rate of inflation.

2.3 TheFinancial Market

Our financial market represents a standard capital market model (see for example Arthur
et a., 1997; Brock and Hommes, 1998; Dangl et a., 2001). Myopic investors maximize
their next period's utility subject to a budget restriction. At each time step agents invest
their wealth in arisky asset (a stock or index of stocks) and in bonds, which are assumed
to berisk free. Therisk free asset is perfectly elastically supplied and earnsarisk free and
constant interest rate. Investors are allowed to change their portfolio in every time step.
Asin many other heterogeneous agent models we assume that two kinds of investors
exist: Fundamentalists and chartists. The two types of investors differ in how they form
expectations of future prices. Additionally investors have different time horizons which
are modeled via the time length agents ook back into the past. Fundamentalists
determine their price expectations according to amodel based on fundamental
information, which in our model are past dividends. They calculate afair price and expect
that the current price will gradually move towards it at some fixed rate. A fundamentalist
assumes that the fair priceis alinear function of past dividends. Chartists use the history
of the stock pricesin order to form their expectations. They assume that the future price
change per period equals the average price change during the previous periods. The
market uses a sealed-bid auction, where the clearance mechanism chooses the price at
which trading volume is maximized. Note that there may be arange of prices that would
maximize volume. We select the maximum price in thisrange. If there are buy orders but
no sellers then the share priceis set to the maximum bid. If there are only sell orders then
the priceis set to the minimum ask. If there are no ordersin atime period, then the price
remains unchanged. Each trader specializesin asingle firm, and only buys or sells shares
in thisfirm. Each trader isinitialized with a supply of sharesin itsfirm of interest.



Let us have alook at the timing of the events within the financial model. The first
step isthe formation of expectations. Based on past prices and dividends an investor
forms its expectation about the distribution of the next period's price and dividend. The
trading agent is then able to determine the demand function, which is submitted to the
stock market vialimit buy orders and limit sell orders. After the orders of all agents are
submitted the stock market calcul ates this period's equilibrium price At the end of the
period the current dividend is announced and becomes public information.

3 Social Consumer Agents

The integrated markets model, which aready incorporates a validated consumer and
financial market, will serve as atestbed for our new consumer market. The advantage of
this approach is that we profit from avalidated and realistic financial market while we
improve the consumer market model. It allows usto investigate the behavior of the new
bounded rational and socially connected consumer agents in an integrated context.

The consumer market consists of product manufacturing firm agents and regularly re-
purchasing consumer agents. During a simulation time step, each consumer must make an
individual product purchase decision based on the following factors:

e itspreferencein product space (individual needs)

e thebehavior of its social network and

e the current price of the offered products.

Furthermore the agents are able to commit to repetition, imitation, social comparison and
deliberation behavior dependent on their cognitive state (satisfaction and uncertainty).

3.1 Consumer Preferences

The product features are represented in two dimensions as pairs of real numbersin the
range [0,1]. Each firm manufactures a single product with certain properties, which
define the product’ s position in feature space and are adaptabl e to the consumer’s
demands. Each consumer agent isinitialized with arandom product preference in product
feature space. There is no distinction between product features and consumer perceptions
of those features since we were not concerned with advertising (for an example of a
consumer markets model using this distinction see Buchta and Mazanec, 2001).

The product preference IN represents the individual needs of an agent (equation
1). It is calculated each simulation time step and is a function of the distance between the
firms manufactured products and the consumer agent’s own preferences. The measureis
computed as one minus the Euclidian distance between the position of the ideal preferred
product of customer c (IP;) and the position of the produced product i (PP;) in the two-
dimensional feature space (equation 1).
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3.2 Social Networks

Every consumer agent is embedded in a socia network structure which is randomly
initialized regarding the number of neighbors and the topology of the network.

For asocia network structure to have “small-world” topology it must exhibit
certain properties. This can be easily described in a graphical example. Figure 2 shows
three examples of networks with fifteen consumers, each with an average of four
neighbors. Every vertex represents one consumer agent and an edge represents a bi-
directiona connection between two consumer agents. The left picture shows a completely
regular graph (random connection probability per consumer is zero), while the right
graph represents a completely random connected topology (random connection rate is
one). Although regular networks and random graphs are useful idealizations, many real
networks lie between the extremes of order and randomness. For intermediate val ues of
randomness (the middle picture consists of fifteen percent random connections) the graph
can be interpreted as a small-world network. To construct small-world network
topologies we start out with a completely regular graph. Then with a certain probability
we reconnect each edge to a randomly chosen vertex over the entire ring, with duplicate
edges forbidden. The small-world networks are much more clustered than arandom
graph. Hence if consumer A islinked to B and B islinked to C, thereis a greatly
increased probability that A will aso belinked to C, a property that is called transitivity
(Wassermann and Faust, 1994). Despite the high clustering small-world networks have
characteristic small path lengths, like random graphs (Watts and Strogatz, 1998; Strogatz,
2001).

Figure 2: Example of aregular graph (left), small-world network (middle) and a
completely random graph. Each graph is consists of fifteen consumers, all connected with
on average four neighbors (adapted from Watts and Strogatz, 1998).

We define the “social” market share SV (equation 2) to transform the social network into
arelevant decision structure for an individual consumer agent c. It is represented by the
quantity of the last purchases of product i in the consumer agent ¢’s social neighborhood
(LPP,) divided by the number of all purchases occurred in its neighborhood (products
range from one to n).
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Intuitively, the social market share represents a measure of a product’ s popularity
amongst a“clique” of socially connected people.

3.3 Cognitive States

According to the consumat approach (Janssen and Jager, 2000) two intrinsic cognitive
states can account for different types of behavior and decision making. Dependent on
their experienced level of satisfaction (S) and uncertainty (U) consumer agents are able to
commit to repetition, imitation, social comparison and deliberation behavior.

We define that consumer ¢ experiences the following satisfaction level (S
regarding the purchase of product i (equation 3).

S

c,i

:SI\/Ici*SNW+INci*(1—SNW)+(1—L)*PSAT (3
' ' max(P)

Thus consumer agents can react to their individual needs (IN), social needs (SV) and the
prices of the produced products (P) with modification of their cognitive parameter
satisfaction (S). Furthermore satisfaction weighs the social market share (weight SNW)
against individual needs (weight 1-SNW) and the price of the offered product (weight
PSAT).

A consumer agent’ s experienced uncertainty (U) is defined as the squared
deviation of the actual level of satisfaction (S) from its expected level of satisfaction
which equals the agent’ s last obtained satisfaction level (S.1, see equation 4).

U =(8-S.)° (4)

To differentiate between possible actions threshold parameters for minimum satisfaction
(Smin) and maximum uncertainty (Umax) are introduced. They also represent an agent’s
bias to commit to a certain category of action with a certain probability (table 1).

Table 1: Actions resulting from cognitive state variables of consumer agents (according
to Janssen and Jager, 2000).

Cognitive state | Satisfied ~ Not Satisfied

Certain Repetition  Deliberation
Uncertain Imitation social comparison

The agent’ s performed behavior and purchase decision is aresult of its experienced levels

of satisfaction and uncertainty:

e Repetition: if the agent experiences satisfaction (S>Syin) and is also certain about its
choice (that means that its last choices nearly met its expectations hence U<U )



then it has no reason to change his last decision. Therefore the customer agent will
consume exactly the same product which it purchased the last time step.

e Imitation: if acustomer agent again feels satisfied (S>Sin) but it experiences
uncertainty (its last choice deviated much from its expectations and U> U,,x) then the
customer will investigate its social neighborhood and give the product atry, whichis
consumed most by its friends. If there is more than one product one will be randomly
selected among the most purchased products.

o Deliberation: if aconsumer isnot satisfied (S<Syin) and it is certain (its expectations
were met, thus U<U ) it will purchase the product with the highest overall
satisfaction value (according to equation 3). Again if there is more than one candidate
product, one will be randomly selected among the most satisfying products.

e Socia comparison: if the consumer agent happens to be not satisfied (S<Syin) and
uncertain (U>Unay) the sametime step, it will engage in abehavior called social
comparison. This means that the agent will consider the product that is consumed the
most in its social neighborhood (anal ogue evaluation of the social market share) but
one that also exceeds or reaches its expectations for satisfaction (see equation 3)
originating from hislast consumption. If there is more than one candidate product,
one will be randomly selected from the eligible products.

With this cognitive decision structure implemented and the agents’ ability to relate their
expectations to their social network we validate our simulation results against a complex
behavioral phenomena and an empirically stable stylized fact found in consumer markets.

4 Model Validation

Gaining crucial insights into underlying mechanisms of real marketsis amajor goal of
agent-based economic modeling. Thus a useful model should be able to reproduce
observable market behavior or so-called “ stylized facts’” capturing the dynamics of the
investigated market. Therefore we validate our model against these empirical properties
by the use of arecently introduced algorithm based on Markov chain Monte Carlo
(MCMC) sampling (Sallans et al., 2003).

The MCMC sampling helps us focus computational power on parameter space
areas where stylized facts are reproduced very well. The goal isto understand the impact
of parameters on model behavior, especialy in these interesting areas. The stylized facts
of the consumer market on which we mainly focussed were the properties of the
consumers’ social networks (sections 3.2 and 6) and the Bass diffusion model (sections
4.2). In order to quantify how well the market reproduces a stylized fact, an energy
function is defined. The energy function represents a measure of the fit of the stylized
fact to the output of the model. We construct an energy function for a stylized fact such
that low energy corresponds to good reproduction of the fact. For example, an energy
function for the Bass diffusion model would generate low valuesif a Bass curve fits very
well to afirm’s market share data (section 4.3).

The MCMC procedure first randomly changes model parameter values before a
simulation run which generates one sample of model parameters. Then the quality of the
generated parameter sampleis evaluated based on a previoudy defined energy function
which is unique for each stylized fact. The sample is accepted or rejected based on the



energy and the MCMC procedure starts over until an arbitrary number of parameter
samplesis drawn (we choose a minimum of one thousand samplesto get statistically
significant results). The advantage of this method is that computational resources are
distributed on what are probably the most interesting parameter combinations. The whole
validation procedure works as follows:

e Selection of an empirica stable stylized fact

e Design of an adequate energy function for that fact

e MCMC simulation runs

e Analysisand perhaps repetition of simulation runs

The MCMC sampler we use was recently introduced by Sallans et al. (2003) and is based
on principles of the Metropolis algorithm (Metropolis et a., 1953). It has the property
that samples are more likely to be drawn from low-energy areas. The sampler actsasa
“directed” random walk through model parameter space, avoiding high-energy areas. In
the limit, parameter samples are drawn according to the normalized probability
distribution defined by the energy function. But even without theoretical guarantees on
the distribution of sampled parameters, the sampler can find good model parameter
settings, and reveal interesting correlations between model parameters. In practice, we
will not generate Markov chains which are sufficiently long to reach the equilibrium
distribution. Instead we are content with one thousand samples drawn for each model run.
While thisistoo short to alow for convergence, we can still examine the sample set to
identify regions where stylized facts are well reproduced, and ook for statistically
significant correlations between parameters. Validation results for the Bass model runs
are shown in section 5 and for the socia networks in section 6.

41 Mode Parameters

The focus of state of the art modeling techniquesis not just to cover every market
phenomena observed. Rather it lies on “noncritical” abstraction and careful parameter
selection by gradually adding complexity once the previous model has been fully
understood. This prevents the modeler from introducing ad hoc parameters to capture
important causal relationships.

We are building on the foundation of the validated integrated markets model
including consumer, firm and stock trading agents. Thus we started out with the
originally given parameter values by Sallans et al. (2003) which guarantee awell
functioning integrated financial and consumer market. Despite our goal to keep the model
as simple as possible, additional parameters were necessarily introduced to account for
the social network functionality and the improved agents' cognitive decision structure
(table 2). All parameter values must be initialized before amodel simulation isrun. The
column “value” of table 2 shows the start values used for the validation runs with the
MCMC sampler. These values were found to be plausible based on evaluations of initial
trial simulation runs (valuesin italics are given by the original model and were held fixed
for al simulation runs).
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Table 2: Model parameters for the integrated markets simulation.

Parameter  Description Range Value Reference
NCons Number of simulated consumer agents N 100 Section 3.2
NNbs Number of average neighbors per consumer agent N 4 Section 3.2
PClus Percentage of randomness of small-world network [0, 1] 0.1 Section 3.2
SNW Weight of social network for satisfaction [0, 1] 0.5 Equation (3)
PSat Weight of price for satisfaction [0, 1] 0.5 Equation (3)

SATmn  Threshold for minimum satisfaction of consumer agent [0, 1] 0.5 Section 3.3
UNC.a  Threshold for maximum uncertainty of consumer agent [0, 1] 0.5 Section 3.3

v Firm learning rate R>0 0.001 Sdlansetal., 2003
Y Reinforcement learning discount factor for firm [0, 1] 083 *“-
Oty Strength of profitability reinforcement to firm [0, 1] 047 *-
op Strength of stock price reinforcement to firm [0, 1] 053 *“-
N Number of consumer cluster centers N 3 ‘-
\P Proportion of fundamentalist traders [0, 1] 057 *-
N, Proportion of chartist traders [0, 1] 043 “-

The quality of reproduction of the stylized facts should simply depend on the
characteristics of the model’ s behavior. The parameters, which account for different
features of our integrated markets simulation, can be grouped as follows:

Social network properties: These are described by the number of consumers
(NCONS), the average number of neighbors (NNBS), and the proportion of clustering
(PCLUS). NCONS and NNBS account for the dimension of the artificial consumer
market. The proportion of clustering (PCLUS) accounts for the complexity of the
socia network structure. While avalue of zero represents a completely regular graph
with low complexity, a value of one indicates a completely random connected
topology consisting of the highest possible structural complexity (seefigure 2 of
section 2.2.1). For values between these extremes, the consumers’ socia structure
exhibits small-world properties.

Consumers’ cognitive behavior: The consumers’ behavior and decisions are triggered
by the parameter weight for social needs (SNW), individual needs (1-S\NW) and
product price (PSAT). These parameters account for the level of satisfaction and
uncertainty experienced by the consumer. Furthermore thresholds for minimum
satisfaction (SATwvin) and maximum uncertainty (UNCyax) will influence the action a
consumer agent commits to (section 3.3).

Firms' learning behavior: Thefirms' learning is triggered by the firm learning rate (v)
and the reinforcement learning discount factor (). In order to get good learning, the
firm learning rate (v) should be rather low. If the discount factor (y) islow, the firm
focuses on near-term, if it is high, it will focus on along-term time horizon.

Fixed parameters: The firm agent’s parameters o, and o, which sum to unity, trade
off the relative importance of profits and stock price in a firm agent's decision-making
process (see section 2.2). N denotes the number of cluster centers as described in
section 2.2. As mentioned in section 2.3 the stock market consists of fundamentalists
and technical traders. The parameters proportion of fundamentalists (Nf) and
proportion of chartists (N;) maintain the heterogeneity of the market traders, which is
necessary to preserve financial market liquidity and trading volume.
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4.2 TheBassDiffusion Mode

The seminal work of Frank M. Bass (1969) describes a simple mathematical model of
market penetration of a new product or concept as a function of internal (for example
word of mouth) and external influences (for example advertising). The model and its
variations have been successfully applied by marketing scientists in many different areas
for over 30 years. Examplesinclude DirecTV (early 1990s), a satellite television service
which forecasts new subscription rates, and RCA (mid 1980s), which effectively used an
extension of the Bass model to forecast the sales of CDs as a function of the sales of CD
players. Fields of application are usually the quantification of the speed of diffusion of
durables and non durable products and the forecast of future consumer adoptions (see
Van den Bulte, 2002, for a meta-analysis of research on different product types over
different regions).

The diffusion of innovationsisinfluenced by interpersonal and mass media
communication. The effects of interpersonal communication in particular are thought to
be akey factor for the speed and shape of the diffusion of an innovation (Rogers, 1983;
Mahagjan et al., 1990). The theory of network externalities provides arelated explanation
and quantification of increasing consumer demand and S-shaped diffusion of network
goods or service sales over time (Grajek, 2002). Positive network externalities are
defined as utility, which consumers derive from consumption of a good or service,
increases with the number of other consumers. Economic literature usually distinguishes
between direct and indirect network externalities (see for example Katz and Shapiro,
1985; Economides, 1996). Direct network externalities are related to physical networks
(for example telecommunication technologies). The utility, which consumers derive from
using these technologies, depends undoubtedly on the number of other users. An obvious
reason for a positive dependence is that alarger network allows consumers to satisfy
more communication needs and may decrease the common costs of the service. Another
explanation might be the bandwagon effect since conspicuous consumption givesriseto a
conformistic behavior (Leibenstein, 1950). A negative dependence between network size
and consumers' utility might be justified by congestion or by non-conformism of
consumers (snob effect). Indirect network externalities apply if agood consists of two
complementary components: for example hardware and software. The latter exhibits
supply-side economies of scale (see Katz and Shapiro, 1985). Obviously the amount of
users of the hardware platform determines the size of the market for software and
furthermore enhances the utility gained by use of the hardware.

The original Bass model makes adoption a function of innovation and imitation
effects. The theory details the characteristic empirically observed sigmoid pattern which
levels off to amaturity level (seefigure 3). The spread of an innovation in a market can
be characterized by the Bass formula as a discrete time model (equation 5, see also
Morris and Pratt, 2003).

Xt (v - x,,) 5

xt = p(M _xt—1)+q M

Where X denotes the number of consumers who will adopt at timet, M represents the
market potential or the maximum number of people who will use the innovation. The
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parameters p and q provide information about the speed of diffusion. The coefficient of
innovation p describes the external influences and the coefficient of imitation q describes
the internal influences. A high value for p indicates that the diffusion starts out quickly
but also decreases fast. A high g represents a slow diffusion process at first, which
accelerates quickly afterwards (for example take-off is slower for non durables and
products with competing standards that require heavy investments). In our model, we
validate the different firms market share time series against a cumulative discrete
standard Bass function which gives the absolute number of adopted consumers at a
certain point in time (equation 6).

xt—l
M

Xe=Xy+ p(M - Xt—l) +q (M - xt—l) (6)

The market potential parameter M was set to one, representing the maximum possible
proportion of agentsin our competitive consumer market environment. Examples of
standard bass curves (values for p=0.03 and g=0.38 describe the basic Bass model)
generated by the integrated markets simulation are shown in figure 3.
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Figure 3: Examples of generated Bass curvesin the

. ‘ ‘ ‘ ‘ ‘ artificial consumer market. The black dotted lines

ot aw0 w0 a0 w0 represents the standard Bass curve with the
parameter values for M=1, p=0.03 and g=0.38.

4.3 TheEnergy Function for the Bass M odel

To investigate which parameter settings have influence on the development of Bass
curvesin the artificial consumer market it is necessary to define an adequate energy
function for the adapted Metropolis algorithm (section 4). Our purposeisto find a
measure presenting the optimal fit of a standard Bass curve on the consumer market share
time-series. The measure should neither depend on where in the data the Bass curveis
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located (trandlation invariance with respect to time) nor on the scaling of the curve (scale
invariance, see for example Bishop, 1995). The crosscorrelation function (equation 7)
represents a good solution to overcome these problems since the function is not sensitive
to y-scaling (height) of the data, when comparing two different time series. To account
for the x-scaling (time) the function is set up to compute the maximum correlation
coefficient over all time lags (equation 8). Each data point of the sample (one discrete
time step) equals a single simulation step.

P (k)= T @)
0,0,
Pmax = maxk{va (k)} (8)

While X denotes the market share time series of acertain firm in the artificial consumer
market, Y represents the time series of a standard Bass curve.

To find the optimal fitting standard Bass curve for X, we set up a nonlinear
optimization algorithm based on golden section search and parabolic interpolation (see
for example Forsythe et al., 1976; Hagan et a., 1996). The algorithm fitted standard Bass
curve time series with different width (in Y) to X and minimized the negative
crosscorrelation over all lags between X and Y. Hence the optimization algorithm varied
standard bass curves by scaling until it found the maximum crosscorrel ation coefficient
(the best match). The energy for the MCMC sampler is then calculated as the reverse of
the maximum correlation coefficient since low energy corresponds to good reproduction
of the stylized fact (equation 9).

E_i 9)

" P

5 MCMC Validation Results

The emerged market dynamics of the validated model and the identified set of parameter
values where standard Bass curves could be reproduced very well are presented in the
following sections. First we will describe the overall consumer market dynamics,
followed by a detailed analysis of the parameters and their relationships grouped by their
functionality. All our simulations were based on five firm agents (held fixed over all
runs) acting in consumer markets initialized with one hundred consumer agents.

5.1 Overall Market Dynamics

Interestingly, the emerging market behavior of our simulation modelsis not restricted to
the one investigated stylized fact (Bass curve) of asingle firm. It isembedded in a
realistic market scenario with oligopolic properties Empirical investigations have shown
that in real-life marketsit is very frequent to find oligopoly industries that are
characterized by alarge range of different market shares, with no two firms having the
same market share. Traditional economic models of quantity competition oligopoly are
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not successful in explaining this stylized fact (Watt, 2002). The Cournot model predicts
equal market sharesfor all competitors, while a generalized Stackelberg leader-follower
oligopoly model with one leader, predicts alarger market share for the leader and equal
market shares for all followers (see Stackelberg, 1934; Sherali, 1984; Daughety, 1988).

The aggregate market dynamics of our simulated consumer market is represented
by the market share of each firm and reflects the empirically found oligopoly market
related stylized facts. For example, one or more firms attracted certain consumers by
successful introduction and development of their products, while the others lost in market
share or engaged in price wars. Bass curves solely emerged in low energy areas of the
defined Bass model energy function (figure 4) while they don’t emerge in high energy
areas (figure 5). The squared correlation coefficient p? (equation 8) gives the proportion
of variance explained by the fitted Bass curves with respect to the market share data. It is
useful to compare the Bass curve reproduction quality of the different models.

Figure 4 presents samples where Bass curves were well reproduced. Run 1 (left
column) shows the market share of two competing firms. The market leader (firm 5)
increasingly looses market share to the market entrant (firm 1) which introduced its
innovation at the beginning of the time period. Run 2 shows asimilar dynamic with four
competing firms. Here firm 5 introduces its innovation and competes against firms 2, 3
and 4. The competition ends with two market leaders which basically divided the market.
One isthe former market |eader the other winner is the innovative newcomer. Run 3 also
presents one firm with an emerged Bass curve in its market share (firm 2). It competes
against firm 1, the former market leader, and firm 5. The scenario aso ends in arather
stable oligopoly.

Therunsin figure 5 present samples from a high energy area of the Bass energy
function which did not generate any Bass curves. Run 1 shows initially four competing
firms (firm 1 to 4). Asthe theory of Stackelberg (1934) suggests the competition endsin
astable oligopoly with one leader (firm 3) with higher market share and two followers
with anearly equal market share (firm 1 and 2). Run 2 shows four competing firms with a
rather oscillating market share. First firm 4 seems to be the market |eader soon beaten by
the newcomer (firm 2). Then firm 1 fights against 2 until firm 3 gathers the whole market
share. Afterwards firm 1, 3 and 4 compete until firm 3 wins again. Simulation run 3
shows arather soft competition where firm 2 and 5 increasingly gain in market share
while the firms 1 and 4 seem to have a decreasing trend in market share.
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Run 1 (p=0.9564) Run 2 (p=0.9559) Run 3 (p=0.9539)
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Figure 4: Three typical examples of smulation runsin low energy areas of the Bass
energy function (section 4.3). Each column shows the emerged consumer market
dynamics of an independent simulation run involving five firm agents and 69 (run 1), 57
(run 2), and 89 (run 3) consumer agents. The y-axis denotes the proportion of market
share an individual firm agent could obtain at a specific point in time. The dotted line
indicates the best fit of a standard Bass curve to the market share time serieswith a
resulting correlation coefficient of p. The proportion of variance explained by the fitted
Bass curves with respect to the market share datais given by a p? of 0.9147 (run 1),
0.9138 (run 2), and 0.91 (run 3).
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Run 1 (p=0.3961) Run 2 (p=0.5111) Run 3 (p=0.5121)
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Figure 5: Three typical examples of ssimulation runsin high energy areas of the Bass
energy function (section 4.3). Each column shows the emerged consumer market
dynamics of an independent simulation run involving five firm agentsand 74 (run 1), 75
(run 2), and 57 (run 3) consumer agents. The y-axis denotes the proportion of market
share an individual firm agent could obtain at a specific point in time. The dotted line
indicates the best fit of a standard Bass curve to the market share time series with a
resulting correlation coefficient of p. The proportion of variance explained by the fitted
Bass curves with respect to the market share datais given by a p? of 0.1569 (run 1),
0.2612 (run 2), and 0.2622 (run 3).

5.2 |deal Mode Parameters

The parameter values where standard Bass curves could be reproduced very well is
presented in the form of histogramsin figure 6. The “ideal” parameters don’t take on
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extreme values, which is an indicator for the plausibility of the model. Furthermore table
3 provides information about rel ationships between parameters. In the following sections
we will describe and interpret the model parameters grouped by their functionality.
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Figure 6: Histograms of parameter values from MCMC sampling for the Bass curve
energy function. The histograms include the 90 % of samples with the lowest energy
(equation 9).
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Table 3: Correlation coefficients of the Bass validated integrated markets model.* The
measures socia clustering coefficient (SCC) and socia clustering length (SCL) are
described in section 6.

v NCons Y NNbs PClus SNW PSat SAT,in UNChax SCC SCL
v 1.00
Ncons ***-0.74 1.00
Y 0.11 -0.06 1.00
NNbs -0.09 0.03 -0.37 1.00
Pclus 0.43 **-0.56 -0.28 0.40 1.00
SNW -0.37 **0.52 -0.11 -0.39 -0.28 1.00
PSat ***-0.76 0.49 0.01 0.21 -0.35 0.19 1.00
SAT.in **-0.75 049 -0.38 -0.21 -0.29 **0.52 **0.57 1.00
UNCax 0.33 0.18 0.11 -0.37 -0.03 0.44 -0.44 -0.19 1.00
SCC -0.29 0.14 0.14 0.36 **-0.51 -0.33 0.31 -0.15 -0.46  1.00
SCL -0.22 0.37 0.31 ***-0.83 ***-0.65 0.46 -0.14 0.27 0.37 -0.06 1.00

regression coefficients significant at the **5 % level, ***1 % level.

5.3 FirmsLearning

The firms learning behavior is dependent on the firm learning rate (v) and the discount

factor (y). In order to get good learning, v should be rather low. If the discount factor yis
low the firm focuses on near-term, if it is high it will focus on along-term time horizon.
For the Bass model an intermediate value of 0.04 for v seems to be most appropriate (the

initial value was set to 0.001, seefigure 6). yisinitialized with avalue of 0.83 and has

it's peak around the rather low value of 0.06. Relationships between the firm learning and

other parameters are interpreted as follows:

e Market complexity: The firm learning rate is negatively correlated with the number of
consumers (NCONS) with asignificant correlation coefficient of —0.74 (p=0.0015, see

table 3), which indicates the necessity of better learning in abigger and therefore
more complex market environment (see figure 6, left picture).

e Product price: A significant negative correlation of -0.76 (p=0.001) exists between v

and the price weight (PSAT). Since the firms can change their product’s price or its
features this means that the importance of the product price for consumers increases if
firms are able to engage in more intelligent actions, for example by making necessary
price adaptations (figure 6, right picture).

Consumer satisfaction and adaptation: Another finding is that the overall consumer
satisfaction and uncertainty seems to decrease with the learning rate v. Thisis
reflected by a negative correlation coefficient of —0.75 (p=0.0013) between v and the
threshold for minimum consumer satisfaction (SATwn) and the positive trend
(cc=0.33 but not significant with p=0.23) between v and the threshold for maximum
consumer uncertainty (UNCyax). Hence if the firms exhibit better learning (v gets
smaller) the consumers tend to be rather unsatisfied since the threshold for minimum
satisfaction increased. They also get rather certain since the threshold value for

! Significance was measured in the following way: First, the sequence of parameter val ues was subsampled
such that autocorrelations were insignificant at the one percent confidence interval. Given this independent
sample, the correlations between parameters could be measured, and effective significance levels found.
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uncertainty (UNCwax) increases. As an implication the consumer agents have a high
probability to exhibit deliberative behavior, where they simply choose the maximum
satisfying product (section 3.3). Thus they can react more sensitively to the firms
product price adaptations, a stylized fact which is strongly supported by the notion of
network externalities (see section 4.2). Hence intelligent firm agents seem to lead to
better adapted consumer agents in a Bass curve reproducing market scenario.

So far agood model for Bass curves seems to involve firms which are rather good
learners, operating in a market environment of stable complexity and small world
network properties (see also parameter PCLUSIn the next section).

HCang
Pat

Figure 7: Negative correlation between firm learning rate (v) and number of consumers
(NCONS) and negative correlation between v and price weight (PSAT). The plot shows
the density® of samples for the different parameter values and includes the 90 % of
samples with the lowest energy (equation 9).

5.4 Social Network Structure

The social network properties are described by the model parameters number of
consumers (NCONS), average number of neighbors (NNBS), and proportion of clustering
(PCLUS). NCONS and NNBS account for the dimension of the consumer market while
PCLUS accounts for the complexity of the social network structure. As mentioned in
section 3.2 avalue of zero represents a completely regular graph with low complexity,
while avalue of one indicates acompletely random connected topology. For values
between these extremes, the consumers’ social structure exhibits small-world properties
(the exact properties of real-life social networks are described in section 6).

2 The density plots were generated using the kernel density estimator for Matlab provided by C.C. Beardah
at http://science.ntu.ac.uk/msor/ccb/densest.html (Beardah and Baxter, 1996).

20



A “good” social network for Bass curves seems to be one with a moderate number of
consumers (peak at 70), with each of them having around 16 neighbors on average
(figure 6). Socia network related parameters are interpreted as follows:

e Small-world principles: The clustering rate had two major peaks, a smaller one at
zero and one at a value which lies around 0.3. While the first represents a network
with aregular topology the latter is a strong indicator for the preference of a socia
network based on small-world principles. But there is more evidence on the
importance of small-world properties for the occurrence of Bass curves. From the
first half of samplesonly 1.2 % exhibit a proportion of clustering bigger than 0.5.
Thisisin contrast to the second half of samples where aready 27.5 % show a PCLUS
> 0.5. Additionally we found that all samples with a PCLUS between 0 and 0.1 had
an average Bass energy correlation coefficient (equation 8) of 0.699 (equals 49 % of
explained variance). Samples with a PCLUS between 0.6 and 0.7 exhibited an
average Bass correlation coefficient of 0.823 (equals 68 % of explained variance).

e Balanced network structure: A balanced socia structure seems to be necessary for the
Bass curve stylized fact. Thisis substantiated by a negative correlation of -0.56
(p=0.028, table 3) between number of consumers and proportion of clustering in the
consumer market. Since the proportion of clustering accounts for the complexity of
the socia network structure an increased number of consumers (increased dimension
and complexity) interestingly leads to the preference of lower proportion of clustering
by the MCMC sampler.

Hence the consumer market seems more likely to reproduce Bass curvesif the socia
network has balanced complexity and is structured like a small-world network.

5,5 Consumers Cognitive States

In our integrated markets model the consumers’ cognitive behavior and decisions are
triggered by the parameter weight for social needs (SNW), individual needs (1-S\NW), and
product price (PSAT). Thresholds for minimum satisfaction (SATyn) and maximum
uncertainty (UNCyax) regulate the actions consumers will most likely commit to (see
section 3.3). Consumer agents’ cognitive parameters are interpreted as follows:

e Network externalities: Our simulation results support the hypothesis of positive direct
network externalities as an underlying mechanism for Bass curves (section 4.2). First
as mentioned in section 5.3 consumer agents' sensitivity to price increases with more
intelligent firm actions (price adaptations). In addition the level of minimum
satisfaction increases with the weight of price (cc=0.57, p=0.028, see table 3). Hence
if the price gets more weight the consumers tend to be rather unsatisfied since the
threshold for minimum satisfaction increased. This is another indication for positive
network externalities since consumers seem to become more satisfied with alower
price (weight). Furthermore the top 30 % of samples (sorted by reproduction quality
of Bass curves pmax, See equation 8) exhibit a mean correl ation coefficient pmax Of
0.75 and a mean consumer satisfaction proportion of 97 % (measured by the
proportion of appearance of the consumer behaviors “imitation” and “repetition”, see
also section 3.3). In contrast the first 70 % of samples with a mean Bass reproduction
correlation coefficient pmax Of 0.67 show only 91 % consumers engaged in
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“satisfying” behavior. Hence there is a positive trend for increasing consumer
satisfaction with quality of Bass curve reproduction. This can be explained by
positive network externalities.

e Pricevs. social needs: For the reproduction of standard Bass curves the best
weighting factor for the social market share parameter (SNW) lies dlightly above the
initial value of one half (with a concentration around 0.6), while the price weight
(PSAT) hasits peak at avalue of 0.8. Thisimplies anormalized proportion for social
needs of 0.33, individual needs of 0.22 and price of 0.44 (see equation 3). Thusfor
the satisfaction function of an individual agent the social market share slightly
outweighed the individual needs, while the price seemed to be the most dominant
factor. Although the latter finding is strongly supported by neoclassical economic
theory which states that supply and demand both are function of price, Bass curves
seems to need some additional cognitive and social parameters to occur in our model.

e Consumer satisfaction and uncertainty: The minimum satisfaction threshold (SATwin)
has arelatively high peak with the highest concentration around 0.7. This could mean
that consumer agentsin general are experiencing avery high level of satisfaction or
they are rather committing themselves to a social comparison or deliberation decision
style since the probability to be unsatisfied is rather high (section 3.3). The
uncertainty threshold has its highest concentration at arather low value (0.16), which
indicates that consumer agents experience arather low level of uncertainty in genera
or agents mostly engaging in repetition or deliberative behavior. In order to
distinguish between these possibilities we will now analyze the consumer agents
conducted actions.

e Consumer decisions: The Bass Model summarizesin asimple mathematical form the
key finding from over 4,000 diffusion studies: most people wait until they have
witnessed peers having favorable experiences with the technology or service before
they adopt. Hence most people imitate rather than innovate. Analysis of our simulated
consumer decisions reveals that the actual dominant consumer behavior isrepetition
with a proportion of 89.03 %, followed by deliberation (10.13 %), imitation (0.61 %)
and social comparison (0.24 %) for the top 30 % of samples of the MCMC sampler
(figure 8). Thus repetition behavior seems to be the most important mechanism for
the emergence of Bass curvesin our consumer market model. Since the consumer
market of our integrated markets model is based on repeated purchases (every
consumer purchases once at a simulation time step) the development of standard Bass
curves over time heavily relies on consumer’ s repetition behavior. Hence the model
shows behavior consistent with the Bass diffusion theory (section 4.2). Furthermore
repetition can be viewed as atype of imitation behavior since the consumer agent
imitates its own last decision. For commitment of repetition behavior consumer
agents must experience satisfaction and certainty (low levels of uncertainty). For
deliberation behavior they need to be certain and unsatisfied. Despite the high
threshold for minimum satisfaction the consumer market environment consists of
rather certain agents, who are switching between repetition (when they are satisfied)
and deliberation behavior (when they are unsatisfied).

Our results show that the emergence of Bass curvesin consumer markets can be
explained by the underlying consumer agents’ repetition and imitation behavior which
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leads to increasing demand, and deliberation behavior which refersto positive network
externalities and leads to increased price sensitivity.
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Figure 8: Consumer behavior separated into proportions of imitation, repetition, social
comparison and deliberation behavior (upper diagram). The development of thresholds
for minimum satisfaction (middle diagram) and maximum uncertainty (lower diagram)
shows rather high levels for satisfaction and low levels for uncertainty as indicated by the
mean of the values (the straight line). The plot includes the 30 % of samples with the
lowest energy (equation 9).

6 Comparison to Real-Life Social Networks

In the previous section a small-world network topology was not explicitly imposed, but
occured becauseit led to the generation of Bass curves. We implemented additional
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model runs, in which we forced the simulation to generate consumer markets with small-
world structures related to areal-life social network. We denote this new model as the
“optimized” model. The “optimized” model should exhibit a more life-like social
network structure in the consumer market. From the comparison of the “normal” Bass
validated model as already described in sections 4 and 5 and the “optimized” model we
expected to gain supplementary insights into the role of the small-world properties for
our consumer markets.

6.1 Social Clustering Coefficient and Characteristic Path Length

First we introduce two additional estimators to better characterize the social network
structure. One is the characteristic path length (SCL) and the other is the clustering
coefficient (SCC, see Watts and Strogatz, 1998).

The characteristic path length measures the typical separation between two agents
in the network (a global property) and is defined as the number of connections needed for
the shortest path between two agents, averaged over all pairs of agentsin the consumer
market. To find the shortest path between two agents the Floyd-Warshall algorithm was
applied (see for example Cormen et al., 2001).

The clustering coefficient measures the cliquishness of atypica neighborhood (a
local property) and is the fraction of existing connections compared to all possible
connections within an agent’ s neighborhood, again averaged over all consumer agents.
Suppose that the consumer agent ¢ has NN number of neighbors and NC; actual
connections between them. Then its clustering coefficient SCC is defined as follows
(equation 10):

CC. = NC, (10)

NNJNNC—D;

The characteristic path length (SCL) and the clustering coefficient (SCC) are both a
function of the amount of randomness or complexity of the network structure (expressed
by the parameter proportion of clustering PCLUS). Watts and Strogatz (1998) find that
path length and clustering depend differently on the amount of randomnessin the
network. SCL decreases quickly, while SCC drops rather slowly with an increasein
PCLUS This can also be seen in table 3, where SCL and PCLUS exhibit a correlation
coefficient of —0.65 (p=0.0091), while SCC and PCLUS show a cc of —0.51 (p=0.053).
This leads to a small-world network with a high amount of clustering and a rather short
characteristic path length. From a socia systems perspective this means that it only takes
asmall number of well-connected people to make aworld small (Collins and Chow,
1998). Watts and Strogatz (1998) lists an empirical example regarding these estimators
derived from the Internet Movie Database and including approximately 90 % of the
actors (table 4). Additionally they provide information about a randomly connected
network with the same number of vertices (225 actors) and average number of edges (61
actors, see also table 4).
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Table 4. Socia network properties of movie actors Watts and Strogatz (1998)

Social Network Characteristic Path Length (SCL)  Clustering Coefficient (SCC)

Film actors 3.65 0.79
Random 2.99 0.00027

6.2 TheOptimized Model

To be able to compare our model results to a model with amore life-like social network
structure we defined the “optimized” model.

We executed new model runs, where we excluded the parameter proportion of
clustering (PCLUS) from being modified by the MCMC sampler. Hence the only socid
network related parameters to be manipulated by the sasmpler were the number of
consumers (NCONS) and the average number of neighbors (NNBS). Each time the
MCMC sampler changed one of these two parameters, we additionally ran a nonlinear
optimizing algorithm (based on golden section search and parabolic interpolation, see for
example Forsythe et al., 1976; Hagan et a., 1996) to find an optimal value for PCLUSfor
the current sample. This means that with a given NCONS and NNBS the optimizer was
meant to manipulate the parameter PCLUS until it got as close as possible to the values
for SCL and SCC shown in table 4. With this obtained “optimal” value for PCLUSwe set
up the new consumer market for the current sample. The value for PCLUSwas retained
for the following samples until the MCM C sampler again changed one of the two
parameters NCONS or NNBS,

Hence the “optimized” model should explicitly exhibit small-world parameters
similar to those shown in table 4.

6.3 Model Comparison

An overview of the differences between the optimized and the “normal” model is shown

in table 5. Each of the valuesis discussed below:

e Valuesof the Bass correlation coefficient (pmax, See equation 8): Despite the fact that
the means of both models|ook very similar in absolute values they are significantly
different at the 5% significance level (p=0.0218) due to the low standard deviation.
Interestingly thereis atrend for the optimized model to have lower standard
deviation. Thisis an indicator for the improved performance of amore life-like socia
network in showing the stylized fact Bass curves. Given more time and model runs
we feel confident that the “normal” MCMC sampler would also find the superior
solutions of the “optimized” model, which were found by the use of prior knowledge
of socia network structure.

e Characteristic path length (SCL): The “optimized” MCMC sampler with the Bass
energy function seemsto prefer socia networks with a very stable path length of
around 1.74. Since SCL measures a global property, the typical separation between
two agents in the network, it also depends on the parameters NCONS and NNBS
(section 6.1). Thus 1.74 was the closest value the optimizer could find under these
given conditions. Interestingly these values are close to the “normal” Bass validated
model which was not forced to generate small-world network properties. This
substantiates the fact that the MCMC sampler in the “normal” model already
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preferred more realistic socia networksin order to increase the probability of the
occurrence of Bass curves. Figure 9 (upper picture) shows the rather stable
development of both parameters over time for the last 50 % of samples.

Clustering coefficient or cliquishness (SCC): The mean values for SCC of both
models are rather close again. Although the optimized model seemsto develop its
dightly but significantly higher average clustering coefficient (0.595) via a network
structure using a higher average number of neighbors (~23) together with a lower
proportion of clustering (0.10). The “normal” model seems to reach its neighborhood
cliquishness via a higher proportion of clustering (0.26) but with alower number of
neighbors (~17). Since PCLUS and SCC are negatively correlated (cc=-0.51,
p=0.053, seetable 3) thisis a consistent result. Figure 9 (lower picture) shows the
development of the parameters over time. Although the mean values of both models
are not that far off, the optimized model has anatural drift in the clustering
coefficients towards its predetermined ideal value of 0.79 (from table 4, see figure 10
and 11).

The socia network properties are described by the number of consumers (NCONS),
the average number of neighbors (NNBS), and the proportion of clustering (PCLUS).
Interestingly both models are very close in their characteristic path length (SCL) and
in their clustering coefficient or cliquishness (SCC). But they seem to devel op these
properties in different ways. The optimized model develops a bigger market with
more consumers and aso more neighbors but exhibiting alower PCLUS on average.
The non-optimized model derivesits properties for SCL and SCC by a higher PCLUS
and lower number of consumers with a smaller neighborhood on average. This
suggests that SCC and SCL may be a better measure for the description of social
network structure than PCLUS alone and substantiates their usefulness. Given enough
time and model runs we feel confident that the MCMC sampler would find all of
these equivalent parametrizations.

Our results again support the importance of small-world network properties in consumer
markets for the appearance of Bass curves. Interestingly this real-life observed topol ogy

emerges without being imposed explicitly in the “normal” Bass validated model.

Table 5: Comparison of the mean parameter values for the “normal” and “optimal” model
including al samples (1000 per model). The values are shown with their 95 % confidence

interval >

Model comparison Mean M eangt Std.Dev. Std.Dev.qp
Pmax (€quation 8)** 0.744+0.014 0.747+0.011 0.2198 0.1824
Characteristic Path Length (SCL)*** ~ 1.81140.007 1.74 +0.03  0.0752  0.3298
Clustering Coefficient (SCC)*** 0.411+0.009 0595+0.009 0.1288  0.1371

Number of Consumers (NCONS)***  73.28 +0.87 89.24 +0.76 14.08 12.26
Number of Neighbors (NNBS)*** 16.47 £t0.37 22.72 +0.76 591 12.28
Proportion of Clustering (PCLUS***  0.261+0.011 0.104+0.007 0.1837 0.112

Mean differences are significant at the **5 % level, ***1 % level.

% The mean comparison is based on the nonparametric Wil coxon ranksum test for independent samples.
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Figure 9: Development of the characteristic path length (SCL) and the social clustering
coefficient (SCC) over time. The straight line represents the non-optimized model, the
dotted line the optimized model values. The plot includes the last 50 % of samples of

both models.
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Figure 11: Comparison of the density plots of the characteristic path length (SCL) and the
socia clustering coefficient (SCC). The plot includes the last 50 % of samples of both
models.

7 Market Share Forecasting

Our results so far have revealed the large impact of small-world network properties on
the occurrence of Bass curvesin our consumer markets (sections 5 and 6).

Because of this strong evidence we ran multiple linear regressions to test the
hypothesis that the model parameters can be used as predictors for future market share
data. For more detailed comparisons we additionally split the market share sample data
into two and four parts. We treat the model parameters as predictors for the emerging
future market share potential. In practice these parameters could be derived, for example,
from investigation of the target market’ s social network topology. Table 6 shows the
significant regression coefficients (model parameters) and the goodness of fit of the
multiple regression (adjusted R?) which gives the best measure of the proportion of
variance explained by the predictor variables. Table 6 also shows the regression
coefficients of the parameters vs. the average of the whole, the average of the halves, and
the average of the quarters of the market share time series. The regression results indicate
that the parameters proportion of clustering (PCLUS section 3.2), weight for social needs
(SNW, equation 3), and the maximum uncertainty threshold (UNCyax, section 3.3) were
able to explain asignificant part of the whole, the 1% half, and especially the 1% quarter of
the market share. While it should be very easy for marketing practitioners to measure the
complexity of the target consumer market’ s structural complexity (PCLUS), this might be
rather difficult for social needs (SNW), and the uncertainty threshold (UNCyax). The
latter could be discovered by, for example, surveys of consumer needs and consumer
satisfaction.

Furthermore we ran multiple regressions where we used 80 % of our model
parameters and market share time series data as training set and 20 % as atest set. While
table 6 shows the overall results and could be used as forecasting tool applicable to real
market share data, table 7 gives the results of our predictions from derived regression

28



coefficients of the training set to the market share of the test set (out of sample forecast).

Table 7 shows the regression coefficients and the goodness of fit of the regression

(adjusted R?) of the training set. ores gives the standard deviation of the residuals from
prediction of the test set data and S.E. the standard error of the residuals (we only used

the significant coefficients for market share forecasting).

The multiple regression results again support the relevant role of the complexity

parameter (PCLUS). In addition we show that the weight of social network for the

consumer agents’ satisfaction (SNW), the maximum uncertainty threshold (UNCyax), and
the social clustering coefficient (SCC) seem to be consistent and substantial predictors for
the emerging market share of our integrated markets model.

Table 6: Multiple linear regression of the integrated markets model parameters against
different proportions of average market share. Bold values indicate significant regression

coefficients.
Whole 1% half 2“haf 1% quarter 2" quarter 3™ quarter 4" quarter
Market Share

Adj. R? 0.11 0.10 0.12 0.14 0.08 0.13 0.10
Y 0.62 0.51 0.73 0.31 0.72 0.63 0.83
Ncons 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y -0.23 -0.22 -0.24 -0.35 -0.10 -0.13 -0.34
NN 0.00 0.00 0.00 -0.01 0.00 0.01 0.00
Pclus *0.43  **0.57 0.29 **0.70 0.44 0.35 0.22
SNW ***(0,82 ***0.88 ***0.77 **%(0,95 ***0.80 ***0.76 ***(0,78
Psat 0.01 0.02 -0.01 0.04 0.00 0.00 -0.01
SAT min -0.10 -0.17 -0.03 **.0.29 -0.05 -0.01 -0.05
UNC hax ***_(0.63 ***-(053 *** (073 **.0.38 ***_0.68 ***_0.74 ***.0.71
SCC 0.47 0.61 0.34 0.72 0.49 0.37 0.31
SCL 0.15 0.09 0.21 -0.06 0.24 0.31 0.12

regression coefficients significant at the *10 % level, **5 % level, ***1 % level

Table 7: Multiple linear regression of the significant integrated markets model parameters
against different proportions of average market share. Bold values indicate significant
regression coefficients.

Whole 1% half 2“haf 1% quarter 2" quarter 3™ quarter 4™ quarter
Market Share

S.EE. 0.12 0.12 0.12 0.12 0.13 0.12 0.10
Ores 0.24 0.26 0.24 0.31 0.26 0.24 0.25
Adj. R? 0.07 0.06 0.11 0.10 0.06 0.12 0.08
Pclus ***0.69 ***0.80 **0.58 **0.86 **0.75 ***(.66 *0.49
SNW *»**0,76 ***0.80 ***0.73 ***(0.81 ***0.80 ***0,72 ***0,75
UNCax ***_0.44 *.0.32 ***-0.57 -0.11 ***_0.54 ***_0.59 ***%_0.55
SCC *0.97 *1.15 *0.79 *1.20 *1.09 *0.83 0.75

regression coefficients significant at the *10 % level, **5 % level, ***1 % level
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8 Conclusions

Why is network anatomy so important to characterize? Because structure always
affects function. For instance, the topology of social networks affects the spread
of information and disease, and the topology of the power grid affects the
robustness and stability of power transmission (Strogatz, 2001).

This paper explores the impact of a cognitive and socially bounded agent based consumer
model on the integrated markets model recently introduced by Sallans et a. (2003). First
we present a new consumer agent model (sections 2 and 3) which is embedded in a social
structure based on “small-world network” principles (Milgram, 1967; Watts and Strogatz,
1998). Furthermore the agents follow a rather simple cognitive decision structure, but one
which is able to account for valid behavioral dynamics such as habits, imitation and

social comparison processes (Janssen and Jager, 2000). In the second part of the paper we
explore the underlying mechanisms of Bass curves by validation of the model generated
consumer markets data against empirically derived time series using a recently presented
Markov chain Monte Carlo method (MCMC, see sections 4 and 5). The model produces
consistent results as suggested by economic theory of network externalities. Our results
show that the emergence of Bass curvesin consumer markets can be explained by the
underlying consumer behavior: repetition and imitation behavior, which leads to
increasing demand, and deliberation behavior, which refers to positive network
externalities and leads to increased price sensitivity (section 5.5). Furthermore a good
model for Bass curves seems to involve firm agents which are good learners, operating in
amarket environment of stable complexity and small world network properties (sections
5.3and 5.4).

The most striking fact that we document is the importance of small-world network
properties for the occurrence and prediction of the Bass curves in consumer markets.
Interestingly this real-life observed topology emergesin our model by selection of the
MCM C sampler without being imposed explicitly (section 6). This has implications for
marketing practitioners. Our results strongly suggest that it is useful to consider the
structural properties of the target market, like cliquishness of the consumers
neighborhood or complexity of the market’s social structure, and consumers’ cognitive
parameters, like their (social) needs and consumer satisfaction, to improve the quality of
sales forecasts. These results may even have more general applications than just in
combination with the Bass model. Further (empirical) research seemsto be fruitful and
necessary regarding the small-world properties in conjunction with marketing forecasts.
One line of research could focus on the grouping of the markets by their social properties
and relate these for example to innovation and imitation effects (the p and g parameters)
of the Bass diffusion model and hence find different impacts of the structural properties
on future market share development.
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